Automation of SDTM Generation & Artifacts using CDISC 360 enriched standards

Bhavin Busa (Vita Data Sciences), Jianhui [Jimmy] Zhao (Allergan)
CDISC 360: The Journey So Far and the Road Ahead
April 28, 2020
Agenda

1. Workstream 6 Introduction
2. Current State: CDASH to SDTM Execution
3. CDISC 360 Enriched Metadata
4. Future State with Concept-based Standards: CDASH to SDTM Execution
5. Process Flow for CDISC 360 Proof of Concept
7. Learnings so far
Workstream 6 Introduction
CDISC 360 Workstreams

Workstream 1 - ENHANCE STANDARDS
Create concepts in knowledge graphs

Workstream 2 - PUBLISH STANDARDS
Load into library
Biomedical Concepts
Analysis Concepts
Foundational Standards

Workstream 3
Extend API’s

Workstream 4 - DEFINE
Identify and select standards specification (Use Case 1)

Workstream 5 - BUILD
Configure study specification and create artifacts (Use Case 2)

Workstream 6 - EXECUTE
Automatically process and transform data (Use Case 3)

Transform concepts in machine readable form
Use Case 3 (Workstream 6): **Execute**

Automatic population of data into artifacts
Workstream 6 & Task Team Leads

Workstream 6 Lead

Bhavin Busa, Vita Data Sciences

SDTM/ADaM Automation Task Team Leads

Kaja Najumudeen, TalentMine, Jianhui Zhao, Allergan

TFL Automation Task Team Leads

Prasanna Murugesan, AstraZeneca, Stuart Malcolm, Frontier Science
Current State - without Concept-based Standards
Current State - without Concept-based Standards: CDASH to SDTM Execution

- **Manual Process**
- **Manual or Semi-automated Execution**

* SDTM Specifications
+ SAS Programs
 - SDTM Datasets
 - SDTM Define & aCRF
 - Submission
 - XPT files, Define, aCRF, SDRG

Specify | Build/Execute | Report

Foundational Standards
CDISC 360 Enriched Metadata
Machine-readable CDISC 360 Enriched Metadata

- Structural
- Conceptual
- Process
- Semantic
Concept-based Standards: Biomedical Concept

- Triple Store
- Linking controlled terminology to the variable - standardize value level metadata
- Linked derivations and algorithms to variable(s)
- Include process metadata (ETL instructions)
- Machine readable definition of validation rules

Reference: ‘CDISC 360 - The Journey so Far and the Road Ahead’, Peter Van Reusel, 28th April 2020
Linked Graph Model: Importing Concept-based Standards

Study Build of ODM.XML and Define.XML

ODM CRF Generated using Biomedical Concepts, Bindings, & Standards

ODM-based Vital Signs (VS) CRF

Stylesheet rendering of ODM VS CRF

Reference: ‘CDISC Library: Integrating and Surfacing 360 Content’, Sam Hume, October 16, 2019
Future State - with Concept-based Standards
Future State - with Concept-based Standards: CDASH to SDTM Execution

Study and Data Collection Designers

Design

- ODM CRF
- Define XML
- SDTM Specs & aCRF
- SDTM Programs
- SDTM Datasets

Submission
- XPT files, Define, aCRF, SDRG

Specify | Build/Execute | Report

= Automated Process
Process Flow for CDISC 360 Proof of Concept (PoC)
Machine-readable Mapping Specifications
Essential Elements for Machine-readable Mapping Specifications

We break down the essential elements in 2 dimensions to meet the 4 key aspects of the machine readability

Dimension 1

- **Source**: location (library name), datasets, processing sequence
- **Mapping**: fields needed to describe how source transits to target
- **Target**: location (library name), datasets, processing sequence, attributes (label, class, structure, purpose, etc.)

Dimension 2

- **Dataset Level**: Transit datasets from source to target
- **Variable Level**: Map variables from source to target
- **Value Level**: Map variables from source to target under different conditions
Mapping Specifications: Dimension 1

<table>
<thead>
<tr>
<th>Source Sequence</th>
<th>Source Library</th>
<th>Source Dataset</th>
<th>Source Variable</th>
<th>Source Sequence</th>
<th>Mapping Sequence</th>
<th>Mapping Library</th>
<th>Mapping Dataset</th>
<th>Mapping Variable</th>
<th>Target Sequence</th>
<th>Target Library</th>
<th>Target Dataset</th>
<th>Target Variable</th>
<th>Target Description</th>
<th>Target Data Type</th>
<th>Target Length</th>
<th>Target Sorting Order</th>
</tr>
</thead>
</table>
Mapping Specifications: Dimension 2

Source
- **Library**
- **Dataset**

Mapping
- **Source Sequence**
- **Source Library**
- **Source Dataset**
- **Source Variable**
- **Map Sequence**
- **Map Origin**
- **Map Method**
- **Comment**
- **Code List**
- **Target Sequence**
- **Target Library**
- **Target Dataset**
- **Target Variable**
- **Target Description**
- **Target Data Type**
- **Target Length**
- **Target Sorting Order**

Target
- **Library**
- **Dataset**

Dataset Level
- 1. CDASH
- 2. SDTM
- 3. SDTM
- 4. SDTM
- 5. SDTM

Variable Level
- 4. Derived

Value Level
- 4. Derived

Example Entries:**

Source Sequence	Source Library	Source Dataset	Source Sequence	Source Library	Source Dataset	Source Sequence	Source Library	Source Dataset	Source Sequence	Source Library	Source Dataset	Source Sequence	Source Library	Source Dataset	Source Sequence	Source Library	Source Dataset	Source Sequence	Source Library	Source Dataset	Source Sequence	Source Library	Source Dataset	Source Sequence	Source Library	Source Dataset			
1	CDASH	VS	3	CDASH	VS	4	CDASH	VS																					
2	SDTM	DM	4	SDTM	DM																								
3	SDTM	SV	4	SDTM	SV																								
4																													

Legend:
- **Subset Condition:**
- **Pre Processing:**
- **Join Type:**
- **Join Timing:**
- **Merge Key:**

Notes:
- Dataset Level: CDASH, SDTM, VS
- Variable Level: Derived, Assigned
- Value Level: Derived, Assigned

Source Variable Examples:
- CDASH: VS, SDTM
- SDTM: DM, SV
- Derived: VS, SDTM
- Assigned: VS, SDTM

Target Variable Examples:
- Vital Signs Test Short Name: text, 6
- Nutritional Data: text, 8
- Nutritional Data: float, 8

Target Description Examples:
- Nutritional Data: text, 8
- Nutritional Data: float, 8

Library Examples:
- CDASH: VS
- SDTM: DM, SV
- Derived: VS, SDTM
- Assigned: VS, SDTM

Dataset Examples:
- SDTM: DM, SV
- Derived: VS, SDTM
- Assigned: VS, SDTM

Sorting Order Examples:
- Nutritional Data: float, 8
- Nutritional Data: float, 8
Mapping Specifications: Dataset Level

<table>
<thead>
<tr>
<th>Source Sequence</th>
<th>Source Library</th>
<th>Source Dataset</th>
<th>Subset Condition</th>
<th>Pre Processing</th>
<th>Join Type</th>
<th>Join Timing</th>
<th>Merge Key</th>
<th>Target Sequence</th>
<th>Target Library</th>
<th>Target Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CDASH</td>
<td>VS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>SDTM</td>
<td>VS</td>
</tr>
<tr>
<td>2</td>
<td>SDTM</td>
<td>DM</td>
<td></td>
<td>TARGET</td>
<td>PRE</td>
<td>USUBJID</td>
<td></td>
<td>5</td>
<td>SDTM</td>
<td>VS</td>
</tr>
<tr>
<td>3</td>
<td>SDTM</td>
<td>SV</td>
<td></td>
<td>TARGET</td>
<td>PRE</td>
<td>USUBJID, VISITNUM</td>
<td></td>
<td>5</td>
<td>SDTM</td>
<td>VS</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>SORT</td>
<td></td>
<td>USUBJID, VISITNUM, VSDTC</td>
<td></td>
<td>5</td>
<td>SDTM</td>
<td>VS</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>SORT</td>
<td></td>
<td>USUBJID, VSTESTCDE, VISITNUM, VSDTC</td>
<td></td>
<td>5</td>
<td>SDTM</td>
<td>VS</td>
</tr>
</tbody>
</table>

1. `data` VS1;
 `set` CDASH.VS;
 `/******** variable level: Source Sequence = 1
 *********/`
 `run;`

2. `proc sort data=VS1; by SUBJID;`
 `proc sort data=CDAHS.DM out=DM2; by USUBJID;`

3. `data` VS2;
 `merge` DM2(`in=a`) VS1(`in=b`);
 `by` USUBJID;
 `if` b;
 `/******** variable level: Source Sequence = 2
 *********/`
 `run;`

4. `... Sequence 3, 4`

5. `proc sort data=VS4;`
 `by` USUBJID VSTESTCDE VISITNUM VSDTC;
 `run;`

6. `data` SDTM.VS;
 `set` VS4;
 `by` USUBJID VSTESTCDE VISITNUM VSDTC;
 `/******** variable level: Source Sequence = 6
 *********/`
 `run;`
Mapping Specifications: Variable Level

```sas
data VS1;
  set CDASH.VS;

  **** Variable level processing;
  ❶ DOMAIN = 'VS';
  ❷ USUBJID = catx('.', STUDYID, SUBJID);
  ❸ VISITNUM = input(put(VISIT, $VISITNUM.), BEST.);
  ❹ [origin = Predecessor, do nothing];

  ❺ if not missing(VISDAT) then
     VSDTC = put(VISDAT, E8601DA.);
  else if not missing(VSDAT) then
     VSDTC = put(VSDAT, E8601DA.);

  ❻ if VISIT = "VISIT 2 (WEEK 0)" then VSBLFL = 'Y';
run;
```
Mapping Specifications: Value Level

data VS3;
 set CDASH.VS;

 if DIABP_VSPREF = 'Y' then do;
 VSTESTCD = 'DIABP';
 VSORRES = DIABP_VSORRES;
 VSORRESU = DIABP_VSORRESU;
 VSSTRESN = 'mmHg';
 VSSTRESN = INPUT(VSORRES, BEST.);
 VSSTRESC = PUT(VSSTRESN, 4.0);
 VSPOS = DIABP_VSPOS;
 OUTPUT;
 end;

*** CONTINUE ***;

 if HEIGHT_VSPREF = 'Y' then do;
 VSTESTCD = 'HEIGHT';
 VSORRES = HEIGHT_VSORRES;
 VSORRESU = HEIGHT_VSORRESU;
 VSSTRESN = 'm';
 VSSTRESN = INPUT(VSORRES, BEST.);
 VSSTRESC = INPUT(VSORRES, BEST.);
 VSSTRESC = PUT(VSSTRESC, 4.0);
 OUTPUT;
 end;
run;
Learnings so far

Machine-readable Metadata
Machine-readable Metadata

- **CDISC 360 Enriched Metadata = Structural + Conceptual + Semantic + Process [Key to Automation]**
 - Content is part of the standards (CDISC library)
 - ETL Metadata (mapping inference & derivation)

- **System agnostic standards, concepts and elements**
 - Can be consumed by any tool
 - Organization can build an automation engine their own way

- **Iterations are needed to learn and evolve**
 - Strong workstream collaboration: CDISC, Industry volunteers & Microsoft
Thank You!

Bhavin Busa, *Vita Data Sciences*
Jianhui [Jimmy] Zhao, *Allergan*